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Abstract. Recently, we showed [J. Phys. B: At. Mol. Opt. Phys. 38, 665 (2005)] that the ‘amplitude-
squared squeezing’, a non-classical feature, can be enhanced in mixing with a coherent light beam using a
beam splitter. Here, we show that the sum squeezing in a two-uncorrelated-mode light beam (one mode is
in Gaussian state and the other one is in coherent state), which is degenerate limit of amplitude-squared
squeezing, may be generated or enhanced in mixing with a two-mode coherent light beam using a beam
splitter.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements

1 Introduction

The density operator of radiation can be written as

ρ̂ =
∫

d2αP (α) |α〉 〈α| (1)

where α ≡ αr + iαi is a complex number, d2α ≡ dαrdαi,
|α〉 is the eigenstate of annihilation operator â with
eigenvalueα (i.e., â |α〉 = α |α〉), called a coherent state
and the carets (ˆ) denote operators [1]. Weight func-
tion P (α) is termed as Glauber-Sudarshan quasiproba-
bility [1] and the radiation is called non-classical when
P (α) is not positive-definite or may involve more singu-
lar functions than the Dirac delta function [2,3]. Earlier,
the non-classical features were studied with only academic
interest [4–6] but soon their importance was realized.
Squeezing [3–5], antibunching [6], and sub-Poissonian pho-
ton statistics [7] were the earliest studied non-classical fea-
tures. Squeezed states in quantum optics are distinguished
by the property that the fluctuations in one of the field
quadratures are smaller than those associated with coher-
ent light or a vacuum. Squeezing has received wide at-
tention because of their potential applications not only in
reduction of noise level in optical communication [8] and in
detection of the extremely weak gravitational radiation [9]
but also in the rapidly emerging area of quantum informa-
tion [10]. The definition of single-mode (normal) squeezing
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was generalized by Hong and Mandel [11] who defined
the 2Nth-order squeezing and by Hillery [12] who de-
fined the amplitude-squared squeezing. Higher-order (two-
mode) situations were first considered by Hillery [13]
in terms of sum and difference squeezing. The property
of sum squeezing that it can be converted into normal
single-mode squeezing by the sum-frequency generation
can be used to detect, in principle, the sum squeezing [13]
and it has been studied by several authors [14–22]. The
concept of sum squeezing first introduced by Hillery for
two modes was extended by Kumar and Gupta [18] to the
case of three modes. An and Tinh [20] further extended
this concept to the most general case of an arbitrary num-
ber of modes and derived the relationship between the in-
put general multimode sum squeezing and output normal
squeezing. It is important to note that the modes may be
photons, phonons, excitons, cooper-pairs, biexcitons, . . .
provided that these must obey the Bose-Einstein commu-
tation relations. Hence, the concept of sum squeezing also
applies to low-density quasiparticles in condensed matter
as well as to the vibrational motion of trapped atoms [20].

Beam splitters [23] are commonly used to mix lin-
early two optical modes. Recently, we [24] found that the
amplitude-squared squeezing, a non-classical feature, can
be enhanced in this simple linear mixing with a classical
light beam using a beam splitter. Since amplitude-squared
squeezing is degenerate limit of sum squeezing [13], it is
natural to investigate whether the sum squeezing can or
cannot be enhanced in a similar case, or can even be made
to appear when it does not exist in the input light. Also,
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we reported recently [25] an example of enhancement of
another non-classical feature in mixing it with a classical
light beam using a beam splitter.

In the present paper, we study this problem consider-
ing mixing of two-uncorrelated-mode light beam with one
mode squeezed Gaussian and the other coherent with a
two-mode coherent light beam, using a beam splitter [26].
Parametric amplification [4,27,28] is one such process that
generates squeezed Gaussian light beams. Gaussian states
of the radiation field are of the greatest importance both
theoretically and experimentally. This broad class includes
pure states such as coherent and squeezed coherent ones
and mixed states such as displaced thermal and squeezed
thermal ones [29]. Interest in the non-classical properties
of Gaussian states [30] recently renewed by the experi-
mental realization of the teleportation of a one-mode co-
herent state [31]. Gaussian states have already been uti-
lized in realizations of quantum key distributions [32],
teleportation [33], and electromagnetically induced trans-
parency [34]. It is also known that a Gaussian field remains
Gaussian by linear transformations that correspond to ba-
sic tools in a quantum optics laboratory such as a phase
shifter, a beam splitter, and a squeezer [35,36]. An impor-
tant property of the Gaussian state is that it is completely
specified by its mean and its covariance matrix.

2 Sum squeezing in the input light beam
and in the output mixed beam

Hillery defined the sum squeezing [13] by considering a
more general operator, V̂φ = 1

2 (â1â2e
−iφ + â†

1â
†
2e

iφ), and
a negative value of

Sφ ≡
〈
(∆V̂φ)2

〉
− 1

4

〈
N̂a1 + N̂a2 + 1

〉
(2)

where 〈N̂a1〉 = 〈â†
1â1〉 and 〈N̂a2〉 = 〈â†

2â2〉 are number op-
erators for modes 1 and 2 with annihilation operators â1

and â2, respectively. As a quantitative measure of the sum
squeezing, we define the squeezing factor for sum squeez-
ing as

S ≡ Sφ/D, (3)

which is bounded by −1 � S < 0 for the case of sum
squeezing. Here the denominator, D, is given by

D ≡ 1
4

〈
N̂a1 + N̂a2 + 1

〉
. (4)

This definition is, in a way, analogous to the definitions
earlier used for quantifying the sub-Poissonian photon
statistics [7,37] and the amplitude-squared squeezing [24].

We consider a two-uncorrelated-mode light beam hav-
ing in one mode (with annihilation operator â1) a beam
with Gaussian statistics and normally-ordered character-
istic function [38–40] of the form,

χN (ξ) = Tr[ρ̂eξâ†
1e−ξ∗â1 ] = exp[−(Aξ2

r + Bξ2
i )], (5)

and in the other mode (with annihilation operator â2)
light in the coherent state |α0〉. Even though equation (5)

does not represent a very general Gaussian field, rotation
and/or displacement operation brings any Gaussian field
to this form [38,39]. As the characteristic function χ(ξ) =
χN(ξ) exp(− 1

2 |ξ|2) → 0 for |ξ| → ∞ [39], we have (A +
1
2 ) > 0 and (B + 1

2 ) > 0. If X̂1 + iX̂2 = â1, a state is
said to be quadrature squeezed [41] if one of 〈(∆X̂1)2〉 or
〈(∆X̂2)2〉 takes a value < 1

4 . This implies that either B
or A is negative because, for light beam with Gaussian
statistics, 〈(∆X̂1)2〉 = 1

2B + 1
4 and 〈(∆X̂2)2〉 = 1

2A + 1
4 .

The uncertainty relation 〈(∆X̂1)2〉〈(∆X̂2)2〉 � 1
16 gives

another restriction on A and B, viz., (A+ 1
2 )(B+ 1

2 ) � 1
4 or

(A+B+2AB) � 0. For a classical light beam, coefficients
A and B are positive. For a non-classical light beam, we
have to have (A+ 1

2 ) > 0, (B+ 1
2 ) > 0 and (A+B+2AB) �

0. Thus, for a non-classical light beam, if B < 0, i.e.,
0 < |B| < 1

2 , we have A > (|B|−1 − 2)−1 > 0. Similarly,
for A < 0, we have 0 < |A| < 1

2 and B > (|A|−1−2)−1 > 0.
For mode 1, expectation values of normally-ordered

functions of â1 and â†
1 can be obtained by using the

relation,

Tr[ρ̂1â
†m
1 ân

1 ] = (−1)n∂m
ξ ∂n

ξ∗χN(ξ) |ξ=0 , (6)

with equation (5). For the mode 2, it is trivial, as it exists
in a coherent state. Expectation values of V̂φ and V̂ 2

φ are,
then, seen to be
〈
V̂φ

〉
=

1
2

[
〈â1â2〉 e−iφ +

〈
â†
1â

†
2

〉
eiφ

]
= 0, (7)

〈
V̂ 2

φ

〉
=

1
4

[〈
â2
1â

2
2

〉
e−2iφ +

〈
â†2
1 â†2

2

〉
e2iφ

+2
〈
â†
1â1â

†
2â2

〉
+

〈
â†
1â1

〉
+

〈
â†
2â2

〉
+ 1

]

=
1
8
(B − A)(α2

0e
−2iφ + α∗2

0 e2iφ) +
1
4
(A + B) |α0|2

+
1
4

[
|α0|2 +

1
2
(A + B) + 1

]
. (8)

Also,
〈
N̂a1

〉
=

1
2
(A + B), and

〈
N̂a2

〉
= |α0|2 . (9)

From equations (7) to (9), the values of Sφ and D can be
written as

Sφ =
1
8
(B−A)(α2

0e
−2iφ+α∗2

0 e2iφ)+
1
4
(A+B) |α0|2 , (10)

and

D ≡ 1
4

〈
N̂a1 + N̂a2 + 1

〉
=

1
4

[
|α0|2 +

1
2
(A + B) + 1

]
.

(11)
A negative value of Sφ will be a signature of the non-
classicality, sum squeezing, and this can occur when one
of A and B is negative.

Consider a 4-port beam splitter which mixes linearly
two two-mode light beams incident at input ports ‘a’ and
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Sc − Sa =
[2 |B| (|α0| + |β|)2(2 |α0|2 − 2 − A + |B|) + 4 |B| |α0|2 (4 + A − |B|)]

[(2 + A − |B| + 2 |α0|2)(4 + A − |B| + 2(|α0| + |β|)2)] (19)

Fig. 1. Beam splitter (BS) with two inputs and two outputs
having two-mode light beams (j = 1, 2).

‘b’ and generates two output light beams at ports ‘c’ and
‘d’. The annihilation operators of these eight modes are
then related by

ĉj = tj âj + irj b̂j , d̂j = tj b̂j + irj âj , (12)

where âj , b̂j , ĉj , and d̂j (j = 1, 2) are annihilation opera-
tors for the two modes at ports ‘a’, ‘b’, ‘c’ and ‘d’ and tj
and rj are real transmission and reflection coefficients [42]
for the jth mode, respectively (see Fig. 1). If the Gaus-
sian light under consideration and coherent light in state
|α0〉 are incident at input port ‘a’ and light in coherent
state |α, β〉 is incident at input port ‘b’, straightforward
calculation gives the values of Sφ and D at port ‘c’ as

Sφc =
1
8
(B − A)[t21t

2
2α

∗2
0 − r2

2t
2
1β

∗2

− 2ir2t2t
2
1α

∗
0β

∗]e2iφ +
1
8
(B − A)[t21t

2
2α

2
0 − r2

2t
2
1β

2

+ 2ir2t2t
2
1α0β]e−2iφ +

1
4
(A + B)[t21t

2
2 |α0|2

+ t21r
2
2 |β|2 + ir2t2t

2
1(α

∗
0β − α0β

∗)], (13)

and

Dc ≡ 1
4

〈
N̂c1 + N̂c2 + 1

〉
=

1
4
[t22 |α0|2 + r2

1 |α|2 + r2
2 |β|2

+
1
2
t21(A + B) + ir2t2(α∗

0β − α0β
∗) + 1]. (14)

The values of Sφ and D at the input port ‘a’ are given
by equations (10) and (11), and henceforth we will denote
them as Sφa and Da, respectively.

3 Discussions

We may write α0 ≡ |α0| eiθ0 , β ≡ |β| eiθβ , define η ≡ φ−θ0

and ς ≡ φ − θβ , and rewrite equations (10), (11), (13)

and (14) in the forms,

Sφa =
1
4
|α0|2 [(B − A) cos 2η + (A + B)], (15)

Da =
1
4
[|α0|2 +

1
2
(A + B) + 1], (16)

Sφc =
1
4
t21t

2
2[(B − A) cos 2η + (A + B)] |α0|2

+
1
4
r2
2t

2
1 |β|2 [(A − B) cos 2ς + (A + B)]

+
1
2
r2t2t

2
1 |α0| |β| [(B − A) sin(η + ς)

− (A + B) sin(η − ς)], (17)

and

Dc =
1
4
[t22 |α0|2 + r2

1 |α|2 + r2
2 |β|2 +

1
2
t21(A + B)

− 2r2t2 |α0| |β| sin(η − ς) + 1]. (18)

We now examine the sum squeezing in output at the port
‘c’ and show its enhancement or appearance whether the
two-uncorrelated-input-modes at port ‘a’ is sum squeezed
or is not. Also, we consider |α|2 = 0, r2

1 = t21 = r2
2 = t22 = 1

2
for simplicity. We observe the following:

Case I: consider the case A > 0, B < 0, and (η, ς) =
(0, π/2), where equation (15) reveals that Sφa, and
therefore Sa ≡ Sφa/Da, is negative and the input is
sum squeezed. Equations (15) to (18), then, give

see equation (19) above.

Here Sc ≡ Sφc/Dc. We can easily visualize cases where
the numerator is negative, and hence Sc < Sa < 0 and
|Sc| > |Sa|. Clearly, the sum squeezing has increased in
such a case. One simple case can, e.g., be |α0| = 0, for
which the numerator can be written as 2B|β|2[{−1 −
(A + 1

2 )} − (1
2 − |B|)] which is clearly negative and the

denominator as [ 32 + A + (1
2 − |B|)][72 + A + (1

2 − |B|) +
2|β|2] which is clearly positive. A similar situation can
be discussed with A interchanged with B and η with
ς. In these cases, although the input light beams are
sum squeezed and the sum squeezing increases in mixing
with coherent light;

Case II: we can also show that, even if the input light
beam is not sum squeezed, the output beam can become
sum squeezed. Some such cases are (i) A > 0, B < 0 and
one of η and ς equal to π/2 and the other equal to 3π/2,
and (ii) A < 0, B > 0 and one of η and ς equal to 0 and
the other equal to π. One simple example is |α0| = 0,
r2
1 = t21 = r2

2 = t22 = 1
2 , for which equations (15) to (18),

give Sa = 0, and Sc = |β|2[A+B +(A−B) cos 2ς]/(4+
A+B +2|β|2). Clearly, Sc < Sa = 0 for, e.g., (i) A < 0,
B > 0, ς = 0 and (ii) A > 0, B < 0, ς = π/2. In
these cases, although the input light beam is not sum
squeezed, sum squeezing appears in the output.
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Fig. 2. Plot of Sa and Sc vs. η with B = −0.49, A = 25, |α|2 = 0, |α0|2 = 1, |β|2 = 25, ζ = π/2 (Sa is represented by ‘−’ and
Sc by ‘+’).

These results can be illustrated by plotting, e.g., Sa and
Sc for different values of η keeping ς fixed. In Figure 2, we
do this taking r2

1 = t21 = r2
2 = t22 = 1

2 , |α|2 = 0, A = 25,
B = −0.49, |α0|2 = 1, |β|2 = 25, and ς = π/2. This may
correspond to an experiment where θ0, the phase of co-
herent input beam at port ‘a’, is varied. We see clearly
regions where (i) Sc < Sa < 0, i.e., sum squeezing is en-
hanced, and (ii) Sc < 0 but Sa = 0 where, although the
input beam is not sum squeezed, the output mixed beam
becomes sum squeezed.

It may be recalled that in mixing of an input quadra-
ture squeezed Gaussian light beam with a coherent beam,
we showed [24] that the output beam couldn’t exhibit
amplitude-squared squeezing [12,24] unless the input
Gaussian beam is amplitude-squared squeezed. This is in
contrast with the present case of sum squeezing where
output light beam may become sum squeezed even if the
input light beam is not sum squeezed. It is important to
note that amplitude-squared squeezing and sum squeez-
ing is occasionally referred to in the literature as one-
and two-mode SU(1,1) squeezing. Since the modes may
be photons, phonons, excitons, cooper-pairs, biexcitons,
. . . provided that these must obey the Bose-Einstein com-
mutation relations, such an analysis of the sum squeezing
can have also application to low-density quasiparticles in
condensed matter as well as to the vibrational motion of
trapped atoms [20]. The theoretical predictions of this pa-
per can be detected experimentally easily in a simple case
(case II) discussed in Section 3. If we consider a Gaus-

sian non-classical beam incident at one input port of the
beam splitter and a coherent beam with a different fre-
quency at the other input port, the input light is not sum
squeezed but the output light beam shows sum squeezing.
Sum squeezing can be detected, in principle, experimen-
tally [13, 18]. It is also to be noted that a similar inves-
tigation was done by the present authors for difference
squeezing [13], but no such an enhancement occurred.

We thank Prof. N. Chandra and Prof. R. Prakash for their
interest and critical comments, and Dr. R.S. Singh, Dr. D.K.
Singh, R. Kumar, P. Kumar, A. Dixit, P. Shukla, Shivani, S.
Shukla, N. Shukla and A. Singh for helpful and stimulating
discussions. HP is grateful to ISRO, Bangalore, India and DKM
is grateful to UGC, New Delhi, India for financial supports.

References

1. R.J. Glauber, Phys. Rev. 131, 2766 (1963); E.C.G.
Sudarshan, Phys. Rev. Lett. 10, 277 (1963)

2. U.M. Titulaer, R.J. Glauber, Phys. Rev. 140, B676 (1965)
3. For review, V.V. Dodonov, J. Opt. B 4, R1 (2002), refer-

ences therein
4. B.R. Mollow, R.J. Glauber, Phys. Rev. 160, 1076 (1967)
5. H. Prakash, N. Chandra, Ind. J. Pure Appl. Phys. 9, 677

(1971); H. Prakash, N. Chandra, Ind. J. Pure Appl. Phys.
9, 688 (1971); H. Prakash, N. Chandra, Ind. J. Pure Appl.
Phys. 9, 767 (1971); H. Prakash, N. Chandra, Lett. Nuovo
Cim. 4, 1196 (1970)



H. Prakash and D.K. Mishra: Enhancement and generation of sum squeezing using a beam splitter 367

6. R.J. Glauber, Quantum Optics and Electronics, edited by
C. De Witt (New York, Gordon, Breach, 1964); N.
Chandra, H. Prakash, Phys. Rev. A 1, 1696 (1970)

7. For review, L. Davidovich, Rev. Mod. Phys. 68, 127 (1996),
and references therein

8. H.P. Yuen, J.H. Shapiro, IEEE Trans. Inf. Theory 24, 657
(1978); R.E. Slusher, B. Yurke, J. Lightwave Technol. 8,
466 (1990)

9. R. Loudon, Phys. Rev. Lett. 47, 815 (1981)
10. N. Takei, T. Aloki, S. Koike, K. Yoshino, K. Wakui, H.

Yonezawa, T. Hiaoka, J. Mizuno, M. Takeoka, M. Ban, A.
Furusawa, Phys. Rev. A 72, 042304 (2005)

11. C.K. Hong, L. Mandel, Phys. Rev. Lett. 54, 323 (1985)
12. M. Hillery, Opt. Commun. 62, 135 (1985)
13. M. Hillery, Phys. Rev. A 40, 3147 (1989)
14. M.H. Mahran, Phys. Rev. A 42, 4199 (1990)
15. A.M. Abdel-Hafez, A-S.F. Obada, Phys. Scr. 46, 27(1992)
16. A.V. Chizhov, J.W. Haus, K.C. Yeong, Phys. Rev. A 52,

1698 (1995)
17. K.C. Yeong, J.W. Haus, A.V. Chizhov, Phys. Rev. A 53,

3606 (1996)
18. A. Kumar, P.S. Gupta, Opt. Commun. 136, 441 (1997)
19. A.V. Chizhov, J.W. Haus, K.C. Yeong, JOSA B 14, 1541

(1997)
20. N.B. An, V. Tinh, Phys. Lett. A 261, 34 (1999)
21. A.A. Faisal, El-Orany, J. Perina, Phys. Lett. A 333, 204

(2004)
22. F.A.A. El-Orany, M. Sebawe Abdalla, J. Perina, Eur.

Phys. J. D 41, 391 (2007)
23. R.A. Campos, Bahaa E.A. Saleh, Malvin C. Teich, Phys.

Rev. A 40, 1371 (1989)
24. H. Prakash, D.K. Mishra, J. Phys. B: At. Mol. Opt. Phys.

38, 665 (2005)
25. H. Prakash, D.K. Mishra, Opt. Spectroscopy 103,

145(2007)
26. A preliminary version of this work has been published

in Proceedings of International Conference on Quantum
Electronics and the Pacific Rim Conference on Lasers
and Electro-Optics, 2005 (IQEC/CLEO-PR 2005, Tokyo,
Japan), publication date: July 11, 2005, pp. 1299-1300.
OPAC Link: http://ieeexplore.ieee.org/servlet
/opac?punumber=10426

27. M.T. Raiford, Phys. Rev. A 2, 1541 (1970)
28. H. Prakash, N. Chandra, Vachaspati, Phys. Rev. A 9,

2167 (1974); H. Prakash, N. Chandra, Vachaspati, Ind. J.
Pure, Appl. Phys. 13, 757 (1976); H. Prakash, N. Chandra,
Vachaspati, Ind. J. Pure, Appl. Phys. 13, 763 (1976);
H. Prakash, N. Chandra, Vachaspati, Ind. J. Pure, Appl.
Phys. 14, 41 (1976); H. Prakash, N. Chandra, Vachaspati,
Ind. J. Pure, Appl. Phys. 14, 48 (1976)

29. P. Marian, T.A. Marian, H. Scutaru, Phys. Rev. A 69,
022104 (2004); P. Marian, T.A. Marian, Phys. Rev. A 47,
4474 (1993); P. Marian, T.A. Marian, Phys. Rev. A 47,
4487 (1993)

30. M.S. Kim, E. Park, P.L. Knight, H. Jeong, Phys. Rev. A
71, 043805 (2005)

31. A. Furusawa et al., Science 282, 706 (1998)
32. F. Grosshaus, G. Van’Assche, J. Wenger, R. Brouri, N.J.

Cerf, P. Grangier, Nature 421, 238 (2003)
33. T.C. Zhang, K.W. Goh, C.W. Chou, P. Lodahl, H.J.

Kimble, Phys. Rev. A 67, 033802 (2003)
34. D. Akamatsu, K. Akiba, M. Kozuma, Phys. Rev. Lett. 92,

203602 (2004)
35. R. Simon, E.C.G. Sudarshan, N. Mukunda, Phys. Rev.

A 36, 3868 (1987); R. Simon, E.C.G. Sudarshan, N.
Mukunda, Phys. Rev. A 37, 3028 (1988)

36. A.K. Ekert, P.L. Knight, Phys. Rev. A 42, 487 (1990)
37. H. Prakash, D.K. Mishra, J. Phys. B: At. Mol. Opt. Phys.

39, 2291 (2006)
38. H. Prakash, N. Chandra, Vachaspati, Ann. Phys. 85, 1

(1974)
39. M.S. Kim, E. Park, P.L. Knight, H. Jeong, Phys. Rev. A

71, 043805 (2005)
40. K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1882 (1969)
41. L. Mandel, E. Wolf, Optical Coherence and Quantum

Optics (Cambridge University Press, Cambridge, 1995),
p. 1036

42. Hans-A Bachor, A Guide to Experiments in Quantum
Optics (Wiley-VCH, Federal Republic of Germany, 1998),
p. 102


